
Scalable Computing Challenges: An

Overview
Michael A. Heroux

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

•Special Thanks:

• DOE IAA

• LDRD

• NNSA ASC

Four Challenges

Parallel Programming Transformation

MPI+Serial …

Goal: 1-10 Billion-way parallel.

Beyond the Forward Problem

Optimal, bounded solutions

New linear algebra kernels.

Fault-resilient application execution

Progress in the presence of system instability

High quality, multi-institutional, multi-component,

multi-layered SW environment.

Single monolithic application …

Preliminaries

About MPI
MPI will be the primary inter-node programming model.

Right ingredients:

Portable, ubiquitous.

Forced alignment of work/data ownership and transfer.

Matches architectures:

Interconnects of best commercial node parts.

Key point: Very few people write MPI calls.

Domain-specific abstractions.

Example: Epetra_MpiDistributor

• 20 revisions since initial checkin in December 2001.

• Only three developers made non-trivial changes in 8+ years.

• No nontrivial changes in 4+ years. No changes in 2+ years.

New languages:

Big fan of Co-Array Fortran (Have been for 15 years: F--).

Chapel looks good.

But tough uphill climb.

Real question: How do we program the node?

Node Classification

Homogeneous multicore:

SMP on a chip.

NUMA nodes.

Varying memory architectures.

Heterogeneous multicore:

Serial/Controller processor(s).

Team of identical, simpler compute
processors.

Varying memory architectures.

Why Homogeneous vs.

Heterogeneous?

Homogeneous:

Out-of-the-box: Can attempt single-level MPI-only.

m nodes, n cores per node: p = m*n

mpirun -np p …

Heterogeneous:

Must think of compute cores as “co-processors”.

mpirun -np m …

Something else on the node.

Future:

Boundary may get fuzzy.

Heterogenous techniques can work well on
homogeneous nodes.

Single Core Performance:

Still improving for some codes

MiniFE microapp.

Clock speeds stable:

~ 2GHz.

FP-friendly

computations stalled.

Memory-intensive

computations still

improving.

Prediction: Memory

bandwidth “wall”

will fall.

Year Processor Clock

(GHz)

Cores/

socket

MFLOPS/

sec

2003 AMD Athlon 1.9 1 178

2004 AMD Opteron 1.6 1 282

2005 Intel Pentium M 2.1 1 310

2006 AMD Opteron 2.2 2 359

2007 Intel Woodcrest 1.9 4 401

2007 AMD Opteron 2.1 4 476

2007 Intel Core Duo 2.3 2 508

2008 AMD Barcelona 2.1 4 550

2009 Intel Nehalem 2.2 4 ~900

Mixed Precision: Now is the Time
with Chris Baker, Alan Williams, Carter Edwards

The Case for Mixed Precision

Float useful:

Always true.

More important now.

Mixed precision

algorithms.

Bandwidth even more

important:

Saturation means loss

of effective core use.

Loss of scaling

opportunity for modern

systems.

50%

15%

• Mixed precision & GPUs:

• GEForce GTX280

– SP: 624 GFLOPS/s

– DP: 78 GFLOPS/s

• First MiniFE result on GPUs: 4.71 GFLOP/s (SP)

• Expected results: 12 GFLOP/s (SP), 6 GFLOP/s (DP)

C++ Templates

How to implement mixed
precision algorithms?

C++ templates only sane
way.

Moving to completely
templated Trilinos libraries.

Core Tpetra library working.

Other important benefits.

Template Benefits:

– Compile time polymorphism.

– True generic programming.

– No runtime performance hit.

– Strong typing for mixed
precision.

– Support for extended precision.

– Many more…

Template Drawbacks:

– Huge compile-time performance hit:

• But this is OK: Good use of
multicore :)

• Can be greatly reduced for
common data types.

- Complex notation (for Fortran & C
programmers).

C++ Templates and Multi-precision

// Standard method prototype for apply matrix-vector multiply:

template<typename ST, typename OT>

CrsMatrix::apply(Vector<ST, OT> const& x, Vector<ST, OT>& y)

// Mixed precision method prototype (DP vectors, SP matrix):

template<typename ST, typename OT>

CrsMatrix::apply(Vector<ScalarTraits<ST>::dp(), OT> const& x,

 Vector<ScalarTraits<ST>::dp(), OT> & y)

// Sample usage:

Tpetra::Vector<double, int> x, y;

Tpetra::CrsMatrix<float, int> A;

A.apply(x, y); // Single precision matrix applied to double precision vectors

Tpetra is a templated version of the Petra distributed
linear algebra model in Trilinos.

Objects are templated on the underlying data types:

MultiVector<scalar=double, local_ordinal=int,
 global_ordinal=local_ordinal> …

CrsMatrix<scalar=double, local_ordinal=int,
 global_ordinal=local_ordinal> …

Examples:

MultiVector<double, int, long int> V;
CrsMatrix<float> A;

Tpetra Linear Algebra Library

Scalar float double
double-

double

quad-

double

Solve time (s) 2.6 5.3 29.9 76.5

Accuracy 10-6 10-12 10-24 10-48

Arbitrary precision solves

using Tpetra and Belos

linear solver package

Speedup of float over double

in Belos linear solver.

float double speedup

18 s 26 s 1.42x

class FloatShadowDouble {

public:

 FloatShadowDouble() {

 f = 0.0f;

 d = 0.0; }

 FloatShadowDouble(const FloatShadowDouble & fd) {

 f = fd.f;

 d = fd.d; }

…

inline FloatShadowDouble operator+= (const FloatShadowDouble & fd) {

 f += fd.f;

 d += fd.d;

 return *this; }

…

inline std::ostream& operator<<(std::ostream& os, const FloatShadowDouble& fd) {

 os << fd.f << "f " << fd.d << "d”; return os;}

FP Accuracy Analysis:

FloatShadowDouble Datatype

Templates enable

new analysis

capabilities

Example: Float with

“shadow” double.

FloatShadowDouble

Initial Residual = 455.194f 455.194d

Iteration = 15 Residual = 5.07328f 5.07618d
Iteration = 30 Residual = 0.00147f 0.00138d

Iteration = 45 Residual = 5.14891e-06f 2.09624e-06d
Iteration = 60 Residual = 4.03386e-09f 7.91927e-10d

Sample usage:

#include “FloatShadowDouble.hpp”

Tpetra::Vector<FloatShadowDouble> x, y;

Tpetra::CrsMatrix<FloatShadowDouble> A;

A.apply(x, y); // Single precision, but double results also computed, available

Programming Models for Scalable

Homogeneous Multicore

(beyond single-level MPI-only)

Parallel Machine Block Diagram

Memory

Core 0 Core n-1

Node 0

Memory

Core 0 Core n-1

Node 1

Memory

Core 0 Core n-1

Node m-1

– Parallel machine with p = m * n processors:
• m = number of nodes.

• n = number of shared memory processors per node.

– Two ways to program:
• Way 1: p MPI processes.

• Way 2: m MPI processes with n threads per MPI process.

- New third way:

• “Way 1” in some parts of the execution (the app).

• “Way 2” in others (the solver).

Threading under MPI

Default approach: Successful in many applications.

Concerns:

Opaqueness of work/data pair assignment.

• Lack of granularity control.

Collisions: Multiple thread models.

• Performance issue, not correctness.

Bright spot: Intel Thread Building Blocks (TBB).

Iterator (C++ language feature) model.

Opaque or transparent: User choice.

App

LibA
(OpenMP)

LibB
 (TBB)

MPI Under MPI

Scalable multicores:

Two different MPI architectures.

Machines within a machine.

Exploited in single-level MPI:

Short-circuited messages.

Reduce network B/W.

Missing some potential.

Nested algorithms.

Already possible.

Real attraction: No new node programming model.

Can even implement shared memory algorithms

(with some enhancements to MPI).

“Ping-pong”

test

Latency

(microsec)

Bandwidth

(MB/sec)

Inter-node

machine

0.71 1082

Intra-node

machine

47.5 114

Multicore Scaling: App vs. Solver

Application:
Scales well
(sometimes superlinear)

MPI-only sufficient.

Solver:
Scales more poorly.

Memory system-limited.

MPI+threads can help.

* Charon Results:

 Lin & Shadid TLCC Report

Hybrid Parallelism Opportunities

8 threads with work stealing

• Selective Shared Memory Use:

– App: 4096 MPI tasks.

– Solver: 256 MPI tasks, 16-way threading.

• Robustness:

- 117 iterations (not 153).

- Eliminates green region.

• Speed: Threading (carefully used):

- Same asymptotic speed as MPI.

- Faster ramp up: 2X or more.

- Better load imbalance tolerance.

 Bottom line: Hybrid parallelism
promises better:

- Robustness,

- Strong scaling and

- Load balancing.

* Thread Results:

 H. Carter Edwards

Hybrid Parallelism:

Shared Memory Algorithms

Critical kernel for many scalable preconditioners.

Key Idea: Use sparsity as resource for parallelism.

Heterogeneous Multicore Issues

Excited about multimedia processors

Inclusion of native double precision.

Large consumer market.

Qualitative performance improvement over

standard microprocessors…

If your computation matches the architecture.

Many of our computations do match well.

Homogeneous vs. Heterogeneous:

Indistinguishable in Future.

APIs for Heterogeneous Nodes

(A mess, but some light)

Processor API

NVIDIA CUDA

AMD/ATI Brook+

STI Cell ALF

Intel Larrabee Ct

Most/All? Sequoia

Most RapidMind (Proprietary)

Apple/All OpenCL

Commonality: Fine-grain functional programming.

Our Response: A Library Node Abstraction Layer

Preparing for Manycore

Refactoring for Manycore

Regardless of node-level programming model:

Isolate all computation to stateless functions.

Formulate functions so that work granularity can

vary.

Fortran/C:

Natural approach.

Still requires some change for variable granularity.

C++:

Separate data organization from functions.

Can still have computational methods.

Beyond the Forward Problem

Advanced Modeling and Simulation Capabilities:

Stability, Uncertainty and Optimization

• Promise: 10-1000 times increase in parallelism (or more).

• Pre-requisite: High-fidelity “forward” solve:

Computing families of solutions to similar problems.

Differences in results must be meaningful.

SPDEs: Transient

Optimization:

 - Size of a single forward problem

Lower Block

Bi-diagonal

Block

Tri-diagonal

t0

t0

tn

tn

Advanced Capabilities:

Readiness and Importance
Modeling Area Sufficient

Fidelity?

Other concerns Advanced

capabilities priority

Seismic

S. Collis, C. Ober

Yes. None as big. Top.

Shock & Multiphysics

(Alegra)

A. Robinson, C. Ober

Yes, but some

concerns.

Constitutive models,

material responses

maturity.

Secondary now. Non-

intrusive most

attractive.

Multiphysics

(Charon)

J. Shadid

Reacting flow w/

simple transport,

device w/ drift

diffusion, …

Higher fidelity, more

accurate multiphysics.

Emerging, not top.

Solid mechanics

K. Pierson

Yes, but… Better contact. Better

timestepping. Failure

modeling.

Not high for now.

Advanced Capabilities:

Other issues

Non-intrusive algorithms (e.g., Dakota):

Task level parallel:

• A true peta/exa scale problem?

• Needs a cluster of 1000 tera/peta scale nodes.

Embedded/intrusive algorithms (e.g., Trilinos):

Cost of code refactoring:

• Non-linear application becomes “subroutine”.

• Disruptive, pervasive design changes.

Forward problem fidelity:

Not uniformly available.

Smoothness issues.

Material responses.

Advanced Capabilities:

Derived Requirements
Large-scale problem presents collections of related

subproblems with forward problem sizes.

Linear Solvers:

Krylov methods for multiple RHS, related systems.

Preconditioners:

Preconditioners for related systems.

Data structures/communication:

Substantial graph data reuse.

Ax = b AX = B, Axi = bi , Aixi = bi

Ai
= A0 + Ai

pattern(Ai) = pattern(A j)

Fault Resilience
with Patty Hough, Vicki Howle

Soft errors are becoming more prevalent due to

small features operating at low voltages

“At 8 nm process technology, it will be harder to

tell a 1 from a 0.” (Camp, 2008)

…

Soft errors are scary to apps

Computation proceeds but is wrong

Careful verification required

What if verification has soft errors?

Users’ View of the System

Now vs. Future

Now:

“All nodes up and running.”

Certainly nodes fail, but invisible to user.

Future:

Nodes in one of four states.

• Dead.

• Dying (perhaps producing faulty results).

• Reviving.

• Running properly (hopefully large portion).

Not hidden from user.

Consider GMRES as an example of how

soft errors affect correctness

Basic Steps

1) Compute Krylov subspace (sparse matrix-vector

multiplies)

2) Compute orthonormal basis for Krylov subspace

(matrix factorization)

3) Compute vector yielding minimum residual in

subspace (linear least squares)

4) Map to next iterate in the full space

5) Repeat until residual is sufficiently small

More examples in Bronevetsky & Supinski, 2008

Every calculation matters

Small PDE Problem: Dim 21K, Nz 923K.

ILUT/GMRES

Correct computation 35 Iters: 343M FLOPS

Two examples of a single bad floating point op

Description Iterations FLOPS Recursive

Residual Error

Solution Error

All Correct Calcs 35 343M 4.6e-15 1.0e-6

Iter=2, y[1] += 1.0

SpMV incorrect

Ortho subspace

35 343M 6.7e-15 3.7e+3

Q[1][1] += 1.0

Non-ortho subspace

N/C N/A 7.7e-02 5.9e+5

One possible approach is transactional

computation

Database transactions: atomic

Transactional memory: atomic memory

operation

Transactional computation:

Designated sensitive computation region

(orthogonalization step in GMRES)

Guarantee accurate computation or notify user

Needs to be coupled with

guaranteed data regions

User-designated reliable data region

Extra protection to improve reliable

data storage and transfer

Examples

Original input data (needed for

verification)

Linear solver: A, x, b

Orthogonal vectors for GMRES

More generally, what should application

developers do?

Abandon the assumption that the system can
continue to guarantee reliability and
correctness???

Work with system, system software, middleware,
etc. developers to learn what can be provided and
to develop requirements

Develop a more holistic view of application
development – develop algorithms/applications
suitable for running correctly through failure and
handling multi-threading

Reserve the right to use slower, more reliable
systems

Software Issues

Barely Sufficient Software Engineering:
Ten SW Engineering Practices

0 Manage source (the basics)

1 Use issue-tracking software for requirements, features and bugs

2 Manage source (beyond the basics)

3 Use mail lists to communicate

4 Use checklists for repeated processes

5 Create barely sufficient, source-centric documentation

6 Use build-configuration management tools

7 Write tests first, run them often

8 Program tough stuff together

9 Use a formal release process

10 Perform continual process improvement

About “Barely sufficient”

A minimalist attitude to formal processes:
Adopt only those that have a large impact.

Mindless Imposition of Formal SE bad for CSE
community:

Large-scale formal document generation as “first step”.
Large effort to satisfy an external requirement, does not benefit the
project team.
Documents become out-of-date quickly and therefore are irrelevant
or even misleading.

Formal documents:
Certainly play a role in a project:

• Domain vision statement, e.g., Trilinos Strategic Goals.
• Highlighted core, ACM TOMS article An Overview of the Trilinos Project.

Modest, should be developed after the product architecture is stable.
Are essential when a product is ready for hand-off to maintenance
team.

Summary

Four Challenges Opportunities

Parallel Programming Transformation

Start now: Refactor using functional programming.

Develop your own Node API (or consider ours).

Beyond the Forward Problem

Plenty of parallelism. Lots of work.

New collection of linear problems to solve.

Fault-resilient application execution

New opportunities to reformulate core algorithms.

High quality, multi-institutional, multi-component,

multi-layered SW environment.

Time to start (continue) SW engineering efforts.

